3 research outputs found

    Web3 Chain Authentication and Authorization Security Standard (CAA)

    Get PDF
    Web3 is the next evolution of the internet, which uses blockchains, cryptocurrencies, and NFTs to return ownership and authority to the consumers. The potential of Web3 is highlighted by the creation of decentralized applications (dApps), which are more secure, transparent, and tamper-proof than their centralized counterparts, allowing for new business models that were previously impossible on the traditional internet.Web3 also focuses on user privacy, where users have more control over their personal data and can choose to share only what they want. The emergence of Web3 represents an exciting new frontier in blockchain technology, and its focus on decentralization, user privacy, and trustless systems has the potential to transform the way we interact with the internet.Web3 authentication is required for enhanced security, increased privacy, and simplified user interface. Traditional login procedures and an authorization flow using web3 authentication work together seamlessly. However, there are several challenges associated with Web3, including scalability and regulatory issues. Chain Authentication and Authorization (CAA) is a multi-layer security mechanism that allows users to choose the security layer that suits them, just like a heavy iron chain, where the user and CAA developers act as blacksmith and form their security protocol that suits them. CAA is a solution to the challenges associated with Web3 authentication and authorization, and it focuses on creating a secure and decentralized authentication and authorization system that is scalable, flexible, and user-friendly

    Papaya Leaf Curl Virus (PaLCuV) Infection on Papaya (Carica papaya L.) Plants Alters Anatomical and Physiological Properties and Reduces Bioactive Components

    No full text
    Papaya leaves are used frequently for curing scores of ailments. The medicinal properties of papaya leaves are due to presence of certain bioactive/pharmacological compounds. However, the papaya leaf curl virus (PaLCuV), a geminivirus, is a major threat to papaya cultivation globally. During the present investigation, we observed that PaLCuV infection significantly altered the anatomy, physiology, and bioactive properties of papaya leaves. As compared to healthy leaves, the PaLCuV-infected leaves were found to have reduced stomatal density (76.83%), stomatal conductance (78.34%), photosynthesis rate (74.87%), water use efficiency (82.51%), chlorophyll (72.88%), carotenoid (46.63%), osmolality (48.55%), and soluble sugars (70.37%). We also found lower enzymatic activity (superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)—56.88%, 85.27%, and 74.49%, respectively). It was found that the size of guard cells (50%), transpiration rate (45.05%), intercellular CO2 concentration (47.81%), anthocyanin (27.47%), proline content (74.17%), malondialdehyde (MDA) (106.65%), and electrolyte leakage (75.38%) was elevated in PaLCuV-infected leaves. The chlorophyll fluorescence analysis showed that the infected plant leaves had a significantly lower value of maximal quantum yield of photosystem II (PSII (Fv/Fm), photochemical quantum yield of photosystem I (PSI (Y(I)), and effective quantum yield of PSII (Y(II)). However, in non-photochemical quenching mechanisms, the proportion of energy dissipated in heat form (Y(NPQ)) was found to be significantly higher. We also tested the bioactivity of infected and healthy papaya leaf extracts on a Caenorhabditis elegans (C. elegans) model system. It was found that the crude extract of papaya leaves significantly enhanced the life span of C. elegans (29.7%) in comparison to virus-infected leaves (18.4%) on application of 100 µg/mL dose of the crude extract. Our research indicates that the PaLCuV-infected leaves not only had anatomical and physiological losses, but that pharmacological potential was also significantly decreased

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    No full text
    Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality
    corecore